A New Approach to Detection of Muscle Activation by Independent Component Analysis and Wavelet Transform
نویسندگان
چکیده
Recent works have demonstrated that the Independent Components (ICs) of simultaneously-recorded surface Electromyography (sEMG) recordings are more reliable in monitoring repetitive movements and better correspond with ongoing brain-wave activity than raw sEMG recordings. In this paper we propose to detect single muscle activation, when the arms reach a target, by means of ICs time-scale decomposition. Our analysis starts with acquisition of sEMG (surface EMG) signals; source separation is performed by a neural net-work that implements on Independent Component Analysis algorithm. In this way we obtain a signal set each representing single muscle activity. The wave-let transform, lastly, is utilised to detect muscle activation intervals.
منابع مشابه
Subsea Free Span Pipeline Damage Detection Based on Wavelet Transform under Environmental Load
During their service life, marine pipelines continually accumulate damage as a result of the action of various environmental forces. Clearly, the development of robust techniques for early damage detection is very important to avoid the possible occurrence of a disastrous structural failure. Most of vibration-based damage detection methods require the modal properties that are obtained from mea...
متن کاملA New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
متن کاملA Hybrid Method for Mammography Mass Detection Based on Wavelet Transform
Introduction: Breast cancer is a leading cause of death among females throughout the world. Currently, radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD) can play an important role in helping radiologists perform more accurate diagnoses. Material and Methods: Using our hybrid method, the background and the pectoral muscle...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملK-Complex Detection Based on Synchrosqueezing Transform
K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...
متن کامل